High-performance fractional order terminal sliding mode control strategy for DC-DC Buck converter
نویسندگان
چکیده
This paper presents an adaption of the fractional order terminal sliding mode control (AFTSMC) strategy for DC-DC Buck converter. The following strategy aims to design a novel nonlinear sliding surface function, with a double closed-loop structure of voltage and current. This strategy is a fusion of two characteristics: terminal sliding mode control (TSMC) and fractional order calculation (FOC). In addition, the influence of "the controller parameters" on the "performance of double closed-loop system" is investigated. It is observed that the value of terminal power has to be chosen to make a compromise between start-up and transient response of the converter. Therefore the AFTSMC strategy chooses the value of the terminal power adaptively, and this strategy can lead to the appropriate number of fractional order as well. Furthermore, through the fractional order analysis, the system can reach the sliding mode surface in a finite time. And the theoretical considerations are verified by numerical simulation. The performance of the AFTSMC and TSMC strategies is tested by computer simulations. And the comparison simulation results show that the AFTSMC exhibits a considerable improvement in terms of a faster output voltage response during load changes. Moreover, AFTSMC obtains a faster dynamical response, smaller steady-state error rate and lower overshoot.
منابع مشابه
SLIDING MODE CONTROL BASED ON FRACTIONAL ORDER CALCULUS FOR DC-DC CONVERTERS
The aim of this paper is to design a Fractional Order Sliding Mode Controllers (FOSMC)for a class of DC-DC converters such as boost and buck converters. Firstly, the control lawis designed with respect to the properties of fractional calculus, the design yields an equiv-alent control term with an addition of discontinuous (attractive) control law. Secondly, themathematical proof of the stabilit...
متن کاملSliding Mode Control of a Bidirectional Buck/Boost DC-DC Converter with Constant Switching Frequency
In this paper, sliding mode control (SMC) for a bidirectional buck/boost DC-DC converter (BDC) with constant frequency in continuous conduction mode (CCM) is discussed. Since the converter is a high-order converter, the reduced-order sliding manifold is exploited. Because of right-half-plan zero (RHPZ) in the converter’s duty ratio to output voltage transfer function, sliding mode current...
متن کاملFractional Modeling and Analysis of Buck Converter in CCM Mode Peration
In this paper fractional order averaged model for DC/DC Buck converter in continues condition mode (CCM) operation is established. DC/DC Buck converter is one of the main components in the wind turbine system which is used in this research. Due to some practical restriction there weren’t exist input voltage and duty cycle of converter therefor whole of the wind system was simulated in Matlab/Si...
متن کاملAugmented System Approach for Fractional Order SMC of a DC-DC Buck Converter ?
A class of switching system is studied in this paper. A Fractional order controller for Sliding Mode Control (SMC) is proposed to control such systems. An augmented fractional order system is considered in order to design the controller. Therefore, more information about the system is available and the controller will have more degrees of freedom than the integer one. The results can either be ...
متن کاملDesign and Implementation of a Constant Frequency Sliding Mode Controller for a Luo Converter
In this study, a robust controller for voltage regulation of the POESLL converter worked in continuous conduction mode is presented. POESLL converter is a DC/DC converter with a high voltage gain. DC/DC converters are used in telecommunication systems, power sources and industrial applications. Owing to the switching operation, the structure of the POESLL converter is highly non-linear. In addi...
متن کامل